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1. Introduction: the need for near-exact distributions and what are these 
distributions 

 

We are all quite familiar with the concept of asymptotic distribution, at least those of us 

who usually work or do research in Statistics. Since there are random variables or statistics 

whose exact distribution is known to be quite elaborate and sometimes even non-manageable, 

the concept of asymptotic distribution was developed since quite early in the history of 

Statistics as a much useful one. 

In simple terms an asymptotic distribution for some random variable or statistic is a 

distribution (of probability) which adequately approximates the exact distribution of that 

random variable or statistic, in such a way that when some relevant parameter of that 

distribution, usually related with the sample size, grows large, this approximate distribution 

improves its closeness to the exact distribution. These asymptotic distributions usually have 

much simpler expressions than the exact distribution and this is usually seen as their great 

advantage, allowing this way for a much easier computation of approximate quantiles and      

p-values for the statistic or random variable being studied. Such asymptotic distributions may 

                                                           
1 Carlos A. Coelho is Associate Professor with Habilitation at the Mathematics Department of 
Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa. Ph.D. in Biostatistics by 
The University of Michigan, Ann Arbor, MI, U.S.A., his main areas of research are Mathematical 
Statistics and Distribution Theory, namely the study and development of exact and near-exact 
distributions for likelihood ratio test statistics used in Multivariate Analysis. Other areas of 
interest are Estimation, Univariate and Multivariate Linear, Generalized Linear and Mixed 
models, as well as Computational Statistics. In a 2004 paper published in the Journal of 
Multivariate Analysis (Coelho, 2004), he laid the foundations for what he called ‘near-exact 
distributions’. Since then these have been successfully applied to a large number of statistics. 
The technique combines an adequately developed decomposition of the characteristic 
function of the statistic or random variable being studied, with the action of keeping the most 
of this characteristic function unchanged and replacing the remaining part by an adequate 
asymptotic approximation. All this being done in order to obtain manageable and very well-
fitting approximations, which may be used to compute very well-fitting p-values and quantiles. 
An introduction to these distributions in simple and intuitive terms, together with the 
presentation of a couple of simple examples, is the topic of the present paper. 
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also commonly arise from some standard results in Probability and Statistics, related with the 

convergence of sequences of random variables which verify some set of criteria. 

For some sets of statistics, as it is for example the case with the so-called likelihood ratio 

test statistics, mainly those used in Multivariate Analysis, some authors developed what are 

nowadays seen as “standard” methods of building such asymptotic distributions, as it is the 

case of the seminal paper by Box (1949).  

However, such asymptotic distributions may quite commonly yield approximations which 

may fall a bit short of the precision we need and/or may also exhibit some problems when 

some parameters in the exact distributions grow large, as it is indeed the case with many 

asymptotic distributions commonly used in Multivariate Analysis when the number of 

variables involved grows quite large (Coelho and Marques, 2011). 

The pertinent question is thus the following one: are we willing to pay a bit more in terms 

of a more elaborate structure for the approximating distribution, anyway keeping it much 

manageable in terms of allowing for a quite easy computation of p-values and quantiles, if we 

will be able to keep untouched a good part of the original structure of the exact distribution of 

the random variable or statistic being studied, this way obtaining a much better approximation, 

which not only does not exhibit anymore the problems referred above and which on top of this 

exhibits extremely good performances  even for very small sample sizes and large numbers of 

variables involved (which usually is not the case with the common asymptotic distributions), at 

the same time that these new approximations are asymptotic not only for increasing sample 

sizes but also (opposite to what happens with the common asymptotic distributions) for 

increasing values of the number of variables and any other parameters involved in the exact 

distribution of the random variable or statistic being studied? 

If our answer to the above question is affirmative, then we are ready to enter the amazing 

world of the near-exact distributions. 

Near-exact distributions are asymptotic distributions developed under a new concept of 

approximating distributions. Based on a decomposition (i.e., a factorization or a split in two or 

more terms) of the characteristic function of the statistic being studied, or of the characteristic 

function of its logarithm, they are asymptotic distributions which lie much closer to the exact 

distribution than common asymptotic distributions. 
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Figure 1 – Illustrating the differences between exact, near-exact and asymptotic distributions. 
    (photos by the author) 

 

In a figurative way we would say that the difference between near-exact and asymptotic 

distributions is that while in the first ones, as it happens with a good oil-on-canvas painting, 

the most of the original or real structure is kept, with some details even enhanced, in the 

asymptotic distributions it is as if the whole picture comes out blurred (see Figure 1 – and if 

differences are not evident please try a larger magnification). 

Indeed the implementation of the process of developing near-exact distributions has 

usually a much useful by-product which is the study and understanding of the fine structure of 

the distribution of the random variable or statistic being considered, as a direct consequence 

of the study one has to carry on the characteristic function of this random variable or of its 

logarithm. This understanding of the fine structure of the distribution of the statistics may 

even enable us to devise ways to develop a family of near-exact distributions for sets of 

statistics, by better understanding the common traits among the exact distributions of these 

statistics, as it was done in Coelho, Arnold and Marques (2010) and Marques, Coelho and 

Arnold (2011). 

The whole process of developing or obtaining near-exact distributions may be seen as 

parceled in two main steps: i) first of all one has to obtain a convenient decomposition of the 

characteristic function and then ii) identify the component part or parts which yield a 
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manageable distribution and are to be left unchanged and the part or parts which not yielding 

a manageable distribution, have to be replaced by an asymptotic approximation which 

corresponds to the characteristic function of a manageable distribution. All this has to be done 

in such a way that the resulting characteristic function yields a manageable distribution, from 

which p-values and quantiles are easy to compute. 

By using this procedure we are able to obtain very well-fitting near-exact distributions or 

approximations even in situations where common asymptotic distributions are not easy to be 

developed or they do not perform well. Actually, it is even possible to obtain near-exact 

distributions for statistics for which there are no asymptotic distributions developed. This is so, 

because we only need to obtain good asymptotic approximations for a part of the original 

characteristic  function. 

If the asymptotic replacement is adequately chosen, the resulting near-exact distributions, 

in case they refer to test statistics used in Multivariate Analysis, will be asymptotic not only for 

increasing sample sizes but also for increasing number of variables used, or even yet for 

increasing number of matrices or vectors being tested. 

Although the whole process may seem a bit complicated, the correct choice of the part of 

the original c.f. to be left unchanged, together with an adequate choice for the asymptotic 

replacement(s) for the part of the original c.f. to be replaced, may quite easily lead to an 

overall quite simple process and to very well-fitting near-exact distributions.  

So far, near-exact distributions have been developed for a wide range of statistics, namely 

likelihood ratio test statistics used in Multivariate Analysis, whose exact distributions have 

quite complicated structures (Coelho, 2004, 2006; Alberto and Coelho, 2007; Grilo and Coelho, 

2007, 2010a, 2010b, 2011; Marques and Coelho, 2008, 2010, 2011a, 2011b; Coelho and 

Marques, 2009, 2010, 2011a, 2011b; Coelho and Mexia 2010; Coelho, Arnold and Marques, 

2010, 2011; Marques, Coelho  and  Arnold, 2011). 

Although dealing with these near-exact distributions, in terms of using them to compute 

the associated near-exact p-values and quantiles, will almost for sure require the use of a 

computer and some programming (preferably using one of the nowadays commonly available 

high level languages or symbolic softwares), the present wide availability of such machinery 

and software poses indeed no problem, on the other hand, by using these near-exact 

distributions we may easily obtain astonishing gains in precision, being almost simple to build 

approximations which cumulative distribution function lies away from the exact by less than a 

hundredth of a millionth part. 
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2. A very simple example 
 

Let us suppose we have a statistic, let us call it  , whose exact distribution is known to be 

the same as that of 

 
3

1

j

j

Y


  (2.1) 

where 
jY  ( 1, ,3)j   are three independent r.v.’s (random variables), with 

 5
2 2

~ ,
j

jY Beta a  , for some 3
2

a  . 

We know that the h-th moment of 
jY  is 

  
 
 

 
 

 
5

2 2 2

25
2 2 2

,

j j

jh

j j j

a a h
E Y h a

a a h

     
  

     
 (2.2) 

and that as such, given the independence of the r.v.’s  we have the h-th moment of  
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 (2.3) 

Let us then consider the r.v. logW    . Since the expression in (2.3) for the h-th 

moment of  is valid for h in a neighborhood of zero, we have the c.f. (characteristic function) 

of W  given by 
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 (2.4) 

But then using recursively the well-known relation 

 ( 1) ( )r r r     (2.5) 

jY 


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for the Gamma function, we may write for n  and a , 
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and then, using this relation, in  (2.4) we may write 
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where 
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or, using what we will see further ahead to be a more general notation, 
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with  (2.7) 

This form of the c.f. of W  in (2.6) is most adequate for the development or construction of 

a near-exact distribution for W  and then for   itself. In (2.6) 1, ( )W t  is the c.f. of a 

Generalized Integer Gamma (GIG) distribution and 2, ( )W t  the c.f. of a sum of independent 

Logbeta r.v.’s.  The c.f. of  in (2.6) is thus the c.f. of the sum of a GIG distributed r.v. with 

and independent sum of independent Logbeta r.v.’s.  

The Generalized Integer Gamma (GIG) distribution (Coelho, 1998, 1999) is the distribution 

of the sum of independent Gamma r.v.’s, all with integer shape parameters and different rate 

parameters (see for example Marques, Coelho and Arnold (2011) or Coelho and Marques 

(2011b) for a simple introduction to the expressions of the probability density and cumulative 

distribution functions of this distribution). The Logbeta distribution is the distribution of the 

negative logarithm of a Beta distributed r.v.. We say that a r.v. X  has a Gamma distribution 

W
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with shape parameter r and rate parameter   if the p.d.f. (probability density function) of  

is 

 1( ) ( 0; , 0) .
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We will denote the fact that the r.v. X  has this distribution by writing ~ ( , )X r  . Then the 
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so that 
1, ( )W t  in (2.6) is easily recognized as the c.f. of a GIG distribution with shape 

parameters jr  and rate parameters 
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and the general expression for the h-th moment of a Beta distributed r.v.) 
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so that 
2, ( )W t  in (2.6) is easily recognized as the c.f. of the sum of three independent 
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Then, since the sum of independent Logbeta r.v.’s does not have a manageable expression, 

while, on the other hand, the GIG distribution is a much manageable distribution, that is, one 

that has a much manageable expression for its c.d.f. (cumulative distribution function) and as 

such, one for which it is easy to compute exact p-values and quantiles, we will leave  1, ( )W t  

in (2.6) unchanged, while we will approximate  asymptotically. The approximation we 

will use for  is based on the fact that (see Tricomi and Erdélyi (1951)) we may 

asymptotically approximate, for large values of ,a  the distribution of any ( , )Logbeta a b  r.v. 
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although the sum of independent Gamma r.v.’s, all with the same rate parameter is another 

Gamma distributed r.v., still with that same rate parameter and a shape parameter which is 
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where  
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as a near-exact c.f. for W . We should note that this near-exact distribution matches, by 

construction, the first m  exact moments of W . 

We should also note that * ( )W t  in (2.10) is the c.f. of a mixture of 1m  Generalized 

Near-Integer Gamma (GNIG) distributions of depth 6.  

The GNIG distribution (Coelho 2004) is the distribution of the sum of a GIG distributed r.v. 

with an independent r.v. with a ( , )r   distribution, where r  is not integer and   is different 

from any of the rate parameters in the GIG distribution. The expressions for the p.d.f. and c.d.f. 

of the GNIG distribution are quite manageable, although they involve the Kummer confluent 

hypergeometric function, which is both highly convergent as well as handled by a number of 

high level languages easily available. To see the expressions for the p.d.f. and/or c.d.f. of the 

GNIG distribution, please refer to Coelho (2004) or Marques and Coelho (2011b). 

Using the notation in Appendix A of the above last reference, we may write the p.d.f. and 

the c.d.f. of these near-exact distributions for W  as 

  * 3 1
1 5 2 2

0

( ) | , , , ; , , , ;6 ( 0)
m

GNIG

W l

l

f w f w r r r l a a w 


      

and 

  * 3 1
1 5 2 2

0

( ) | , , , ; , , , ;6 ( 0)
m

GNIG

W l

l

F w F w r r r l a a w 


      

and the p.d.f. and c.d.f. of the corresponding near-exact distributions for   as 
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where w  represents the running value of the r.v. W  and z  the running value of the r.v.   

and where 1 5, ,r r  are given by (2.7) and r  and   by (2.8). 

A pertinent question now is: how can we evaluate the closeness of these near-exact 

distributions to the exact distribution, moreover since we do not have a closed form  

expression for either the exact p.d.f. or c.d.f.? 

The answer is to use the measure  
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 

     and  

where ( )WF w  and ( )F z  represent respectively the exact c.d.f. of W  and   and * ( )WF w  

and *( )F z
 respectively the near-exact c.d.f. of  and , with WS  and S  representing 

respectively the supports of  and . For more details on this measure, which may be seen 

as based on the Berry-Esseen bound (Berry, 1941; Esseen, 1945; Hsu, 1945; Hwang, 1998), see 

Coelho and Mexia (2010).  

In Table 1 we may analyze the values of the measure   for the near-exact distributions 

whose c.f. is in (2.10), for different values of m , and for increasing values of a . We may see 

how the near-exact distributions exhibit a marked asymptotic behavior for increasing values of 

a , which is a parameter whose value is usually directly related with the sample size in the 

distribution of many likelihood ratio test statistics. We must keep in mind that (see the 

definition of the measure   in (2.11)) the lower the value of  , the better is the performance 

of the associated asymptotic distribution. 

 

W 

W 
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Table 1. – Values of   for the near-exact distribution with c.f. given by (2.10), for 
increasing values of a  and different values of m  

 Value of m  
 (number of exact moments matched) 

a  4 6 10 

2.6 . 8
107 26 

  . 10
105 38 

  . 14
105 46 

  

5.6 . 9
107 12 

  . 11
101 77 

  . 17
108 67 

  

10.6 . 10
105 03 

  . 13
104 32 

  . 19
105 89 

  

25.6 . 12
108 62 

  . 15
101 46 

  . 22
103 09 

  

 

Also, as expected, the more exact moments that the near-exact distribution matches, that 

is, the larger the value of , the lower the value of the measure , showing a closer near-

exact distribution to the exact distribution. We may see as the near-exact distribution that 

matches 4 exact moments shows a difference between its c.d.f. and the exact c.d.f. of at most 

7.26 hundredths of a millionth part. 

Right now some questions may be building in our minds, as for example: 

1 – Why did we use a r.v.   with the structure in (2.1) and why did we use for the r.v.’s jY  

the distributional structure we did use ? 

2  – Can we still do better than what we have done so far ? 

3 – Why did we not use the same approach we used to approximate 2, ( )W t  in order to 

approximate the whole c.f. ( )W t  ? 

4 – Why did we do not use the results available for the distribution of the product of 

independent Beta r.v.’s ? 

The answers to these questions are given in each of the subsections below. 

2.1 – Why did we use a r.v.  with the structure in (2.1) and why did we use for the r.v.’s  

the distributional structure we did use ? 
 

We have done so because this way the r.v.  would have a distributional structure similar 

to the one that many likelihood ratio test statistics, namely many of the ones used in 

Multivariate Analysis, have. 

 

2.2 –  Can we still do better than what we have done so far ? 

The answer to this question is indeed affirmative! Actually, it happens that we did not 

completely explore the fine structure of the exact distribution of the r.v.  in order to keep as 

much as possible of it unchanged when building the near-exact distribution. 

m 


jY




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Indeed, by using (2.5) we may write the c.f. 
2, ( )W t  in (2.6) as 

 

 

 
 
 

   

   

   

   

 

 
 
 

 
 

 

 

 

 
 
 

 

2 ,

3 3 1
2 2 2

2, 3 31
2 2 2

3 3 1
2 2 2

3 31
2 2 2

3
2 1

23
2

( )

1 12
( )

2 1 1

2

2

2

2

a W

W

t

a it a a a it a ita
t

a a it a a a it a it

a it a a ita

a a it a a it

a ita
a a

a a it



                
   

                

           
  
           

   
 
    

 
2 ,

1
1
2

( )b W t

it




 

 

where 
2 , ( )b W t  is the c.f. of an Exponential distribution with rate parameter equal to 1

2
a   

and as such may be combined with 
1, ( )W t  in (2.6) in order to enable us to write ( )W t  as 

    
 

 
 
 

*
2 ,1,

35
2

2 2 3
1 2

( )( )

2
( ) 2 2

2

j j

a WW

r r
j j

W

j

tt

a ita
t a a it

a a it

 





   
      

    
  (2.12) 

where 

  1,1,2,1,2jr
   

or, using what we will see further ahead to be a more general notation, 

 
2

1,2 1 1, ,3

3, ,5 0 4,5 .

j

j j

j j

h j j
r h

h r j j



 

 



  
  

   

with  

In (2.12) the c.f. *

1, ( )W t  is the c.f. of a GIG distribution of depth 5, with shape parameters 
jr   

and rate parameters 
2

2
j

a    ( 1, ,5)j  , while 2 , ( )a W t  is the c.f. of a 

 3 1
2 2
,Logbeta a  distribution. 

As such, in order to obtain a near-exact distribution we will leave *

1, ( )W t  unchanged, 

while we replace 2 , ( )a W t  asymptotically by the c.f. of a finite mixture of  31
2 2

,l a    

distributions ( 0, , )l m , more precisely, by 

    
 1 1

2 2* * 3 3
2 , 2 2

0

( )
m

l l

a W l

l

t a a it
  



      

where the weights *

l  ( 0, , 1)l m   are determined in such a way that 
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 *

2 , 2 ,

0 0

( ) ( ) 1, ,
h h

a W a Wh h

t t

t t h m
t t

 

 
   

 
for  

and 
1* *

0
1

m

m ll
 




  . 

Now, in this case, we will then use 

 ** * *

1, 2 ,( ) ( ) ( )W W a Wt t t    (2.13) 

as near-exact c.f. for W . 

As before, these near-exact distributions match the first m  exact moments of W , and they 

are mixtures of 1m  GNIG distributions of depth 6. The near-exact p.d.f. and c.d.f. for  are 

now respectively given by 

 * * 3 31 1
1 5 2 2 2 2

0

1
( ) log | , , , ; , , , ;6 (0 1)

m
GNIG

l

l

f z f z r r l a a a z
z





         

and 

 * * 3 31 1
1 5 2 2 2 2

0

( ) 1 log | , , , ; , , , ;6 (0 1)
m

GNIG

l

l

F z F z r r l a a a z



          . 

Clearly, the question now is: what gains did we get with the implementation of this near-

exact distribution? 

Well, the values for the measure   in (2.11) for the same values of a  that were used in 

Table 1 are now the ones in Table 2. We may see they are generally lower than the values in 

Table 1, what shows that indeed the near-exact distributions developed in this subsection give 

a better fit. That is, the small extra work we had in building this new version of near-exact 

distributions ended up paying off. 

 

Table 2. – Values of  for the near-exact distribution with c.f. given by (2.13), for 
increasing values of  and different values of  

 Value of  
 (number of exact moments matched) 

 4 6 10 

2.6 . 10
103 56 

  . 13
107 99 

  . 15
102 32 

  

5.6 . 10
101 36 

  . 13
103 61 

  . 17
109 13 

  

10.6 . 11
101 73 

  . 14
102 71 

  . 20
108 09 

  



a m

m

a
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25.6 . 13
104 32 

  . 16
101 68 

  . 22
101 96 

  

 

 

2.3 – Why did we not use the same approach we used to approximate 
2, ( )W t  in order to 

approximate the whole c.f.  ( )W t ? 

 

We may indeed use a similar technique to the one used to approximate 
2, ( )W t  in order to 

approximate the whole c.f. ( )W t , but there is a big drawback in doing this. The whole c.f. 

( )W t  is the c.f. of the sum of three independent Logbeta r.v.’s with different second 

parameters. Thus, in trying to apply to the whole c.f. ( )W t  a similar technique of 

approximation to the one used to approximate 2, ( )W t  this would lead us to use as an 

approximation a finite mixture of 1m  Gamma distributions with shape parameters 15
2

l  

( 0, , )l m  and a rate parameter equal to 1a  . This would correspond to use as 

approximation for the whole ( )W t  a c.f. 

      15 15
2 2*** ***

0

( ) 1 1
m

l l

W l

l

t a a it
  



      (2.14) 

where the weights ***

l  ( 0, , 1)l m   will be determined in such a way that 

***

0 0

1, ,( ) ( ) for
h h

W Wh h

t t

h mt t
t t

 


 

  
 

 

with 
1

*** ***

0

1
m

m l

l

 




  . 

But, this approximation would correspond to a common asymptotic approximation 

(actually with a further improvement which is not common to the usual asymptotic 

approximations which is the fact that this asymptotic approximation matches, by construction, 

the first m  exact moments of W ) since there is no part of the exact c.f. of W  which is left 

unchanged. This is the big drawback in doing things this way. This approximation, although 

working quite well, as it may be seen from the values of the measure  in Table 3, has a much 

worse performance than any of the two near-exact distributions developed.  
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Table 3. – Values of  for the asymptotic distribution with c.f. in (2.14), for 
increasing values of  and different values of  

 Value of  
 (number of exact moments matched) 

 4 6 10 

2.6 . 3
107 36 

  . 3
101 46 

  . 5
106 39 

  

5.6 . 4
102 36 

  . 5
101 21 

  . 8
103 77 

  

10.6 . 5
101 13 

  . 7
101 78 

  . 11
105 37 

  

25.6 . 7
101 54 

  . 10
104 43 

  . 15
104 60 

  

 

 

2.4 – Why did we do not use the results available for the distribution of the product of 
independent Beta r.v.’s ? 

 

In simple terms the answer is: because if we had done so the results would be even worse 

than the ones in Table 3 above, and as such much worse than the ones obtained using the 

near-exact approach. 

There are indeed many results available concerning the distribution of the product of 

independent Beta r.v.’s as for example the ones in Tukey and Wilks (1946), Springer and 

Thompson (1966, 1970), Tretter and Walster (1975), Carter and Springer (1977), Springer 

(1979), Walster and Tretter (1980), Bhargava and Khatri (1981) and Pederzoli (1985) and also 

the ones in Nagarsenker and Das (1975), Nandi (1980), Nagarsenker and Suniaga (1983), Tang 

and Gupta (1984, 1986), Mathai (1984) and Nagar, Jain and Gupta (1985). However, any of 

these results would yield a less good approximation than the one in subsection 2.3 above. 

Actually, only those in the second group of references would yield distributions close to the 

ones in section 2.3 above. Anyway, since such representations of the distribution of the 

product of independent Beta r.v.’s are not designed to match any of the exact moments of the 

distribution, for the same number of terms used in subsection 2.3, the results obtained from 

those distributions would always be worse than the ones that subsection. 

 

3. A more elaborate example 
 
 
The example we are going to consider in this section, although based on the one addressed 

in the previous section, has a much wider scope. Anyway it will take much less page space than 



a m

m

a
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the previous simple example since all the notation and base methodology used to build a near-

exact distribution were settled in the previous section. 

Let us consider the r.v. 

  2 2

1

~ ,with
p

j b
j j

j

Y Y Beta a


    (3.1) 

where p  and b  are two odd integers (in case any of p  or b  is even, we actually do not need 

to resort to the use of near-exact distributions since in that case it may be shown that the 

exact distribution of   is indeed a GIG distribution – see Coelho (1998, 1999) for a proof of 

this result). 

Let logW    . Then, using an argument in all similar to the one used in Section 2, the c.f. 

of W  is 

 
 
 

 
 

2 2 2

1 2 2 2

( )

j jbp

W j j b
j

a a it
t

a a it

     
 

     
  

which, on using once again techniques in all similar to the ones used in the first part of Section 

2 and skipping all the algebraic details, may be written as 

   
 
 

 
 

1,
2,

13
2 2 2 21 1

2 2 2 2 1
1 1 2 2 2 2

( ) ( )

( ) ,
j j

W
W

j jb bp b p
r r

p j p j

W j jb b
j j

t t

a a it
t a a it

a a it

 


 


 

 

         
        

         
 

  (3.2) 

where 

 
2

1 1, ,min( , 1)
1,2

0 1 min( , 1), ,max( , 1)
3, , 3 ,

1 1 max( , 1), , 3 .

with
j

j j

j j

j p b
h j

r h j p b p b
h r j p b

j p b p b


 
 

      
         

 

Then, since 2, ( )W t  is the c.f. of a sum of p  independent  1 1
2 2 2

,
j bLogbeta a    r.v.’s, 

we will replace this c.f., asymptotically, by 

 * ( )

2,

0

( ) ( )
m

r l r l

W l

l

t it    



   , 

where 
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   311 1
2 2 2 2 4

1

and
p

j pb b
p

j

r p a a 



       , (3.3) 

and where the weights l  ( 0, , 1)l m   are determined in such a way that a relation 

similar to the one in (2.9) is verified. 

For r  and   given by (3.3), the resulting near-exact distribution for W  is a mixture of 

1m  GNIG distributions of depth 2p b  , with p.d.f. 

 *

1 3 2 2

0

( ) | , , , ; , , 2 , ; 2 ( 0)
m

pGNIG b
W l p b

l

f w f w r r r l a a p b w  



         

and c.d.f. 

 *

1 3 2 2

0

( ) | , , , ; , , 2 , ; 2 ( 0)
m

pGNIG b
W l p b

l

F w F w r r r l a a p b w  



        . 

Such near-exact distribution will be asymptotic not only for increasing values of a  but also 

for increasing values of b , as it may be checked by analyzing the values of the measure   in 

Table 4. However, as it may be seen from the values of   in that same table, this near-exact 

distribution is not asymptotic for increasing values of p , which is a much annoying drawback. 

Table 4. – Values of  for the near-exact distribution with c.f. given by *

1, 2,( ) ( )W Wt t   

in this section, for increasing values of a  and different values of m  

   Value of  
   (number of exact moments matched) 

 b  p  4 6 10 

2.6 5 5 . 7
102 57 

  . 9
107 23 

  -. 11
101 93  

5.6 ‘’ ‘’ . 7
101 33 

  . 9
101 13 

  . 13
101 71 

  

10.6 ‘’ ‘’ . 9
107 48 

  . 11
101 86 

  . 16
102 24 

  

25.6 ‘’ ‘’ . 10
101 04 

  . 14
104 52 

  . 20
101 59 

  

25.6 5 5 . 10
101 04 

  . 14
104 52 

  . 20
101 59 

  

‘’ 7 ‘’ . 11
103 63 

  . 14
101 10 

  . 21
102 03 

  

‘’ 9 ‘’ . 11
101 53 

  . 15
103 41 

  . 22
103 57 

  

‘’ 15 ‘’ . 12
102 08 

  . 16
102 20 

  . 24
105 66 

  

25.6 15 5 . 12
102 08 

  . 16
102 20 

  . 24
105 66 

  

‘’ ‘’ 7 . 12
108 67 

  . 15
101 62 

  . 22
101 30 

  

‘’ ‘’ 9 . 11
102 64 

  . 15
107 41 

  . 21
101 35 

  

‘’ ‘’ 15 . 10
103 40 

  . 13
102 28 

  . 19
102 25 

  

‘’ ‘’ 25 . 9
108 29 

  . 11
101 58 

  . 16
101 15 

  

 



m

a
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The question now is of course: ‘Is there something we can do in order to obtain a near-

exact distribution which is also asymptotic for increasing values of p ? 

The answer is in fact affirmative. All we have to do is indeed to follow a procedure in all 

similar to the one used in subsection 2.2. As a matter of fact, the importance of such a 

procedure is not only to obtain a better version of a near-exact distribution but rather to 

obtain a true near-exact distribution, asymptotic for every parameter in the exact distribution 

of the statistic it refers to.  

Using that procedure we will be able to write the c.f. of W  as 

   
 
 

 
 

2 ,1,

3 1 2
1 1 2 2

2 2 2 2 2 1
1 2 2

( )( )

( )
j j

a WW

p b b b
r r

p j p j

W b b
j

tt

a a it
t a a it

a a it

    


 

 




      
       

     
  ,  (3.4) 

where 

2

1 1, ,min( , )
1,2

0 1 min( , ), ,max( , )
3, , 3 ,

1 1 max( , ), , 3 ,

withj

j j

j j

j p b
h j

r h j p b p b
h r j p b

j p b p b



 

 




  

    
         

 

which actually seems to be a more natural way to compute the shape parameters in 1, ( )W t . 

Then, in order to build a near-exact distribution we would approximate 2, ( )W t  in (3.4) by 

a mixture of  11
2 2

, bl a     distributions ( 0, , )l m , whose weights *

l  ( 0, , 1)l m   

will be determined in such a way that this mixture of Gamma distributions and 2, ( )W t  in   

(3.4) have the same first m  derivatives at 0t  . 

This near-exact distribution yields, for W , a distribution with p.d.f. 

 * * 11
1 3 2 2 2 2

0

0( ) | , , , ; , , 2 , ; 2 ( )
m

pGNIG b b
W l p b

l

wf w f w r r l a a a p b   
 



       
 

and c.d.f. 

 * * 11
1 3 2 2 2 2

0

02( ) | , , , ; , , 2 , ; ( )
m

pGNIG b b
W l p b

l

wp bF w F w r r l a a a   
 



         

and, for the same values of a , b  and p  used in Table 4 the values of   which are in Table 5. 

Not only these values are smaller than the ones in Table 4 for all cases considered, but also 
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they show that this new near-exact distribution is indeed asymptotic also for increasing values 

of p , which is indeed a much desirable feature. 

 

Table 5. – Values of  for the near-exact distribution with c.f. given by *

1, 2,( ) ( )W Wt t   

in this section, for increasing values of  and different values of  

   Value of  
   (number of exact moments matched) 

 b  p  4 6 10 

2.6 5 5 . 12
102 40 

  . 15
102 09 

  . 19
109 99 

  

5.6 ‘’ ‘’ . 11
102 23 

  . 14
103 25 

  . 18
103 46 

  

10.6 ‘’ ‘’ . 12
104 15 

  . 15
104 14 

  . 21
105 14 

  

25.6 ‘’ ‘’ . 13
101 25 

  . 17
103 34 

  . 23
102 07 

  

25.6 5 5 . 13
101 25 

  . 17
103 34 

  . 23
102 07 

  

‘’ 7 ‘’ . 14
104 40 

  . 18
108 19 

  . 24
102 69 

  

‘’ 9 ‘’ . 14
101 88 

  . 18
102 57 

  . 25
104 87 

  

‘’ 15 ‘’ . 15
102 65 

  . 19
101 76 

  . 27
108 62 

  

25.6 15 5 . 15
102 65 

  . 19
101 76 

  . 27
108 62 

  

‘’ ‘’ 7 . 15
101 05 

  . 20
104 84 

  . 27
101 20 

  

‘’ ‘’ 9 . 16
105 05 

  . 20
101 77 

  . 28
102 52 

  

‘’ ‘’ 15 . 16
101 01 

  . 21
101 87 

  . 30
107 73 

  

‘’ ‘’ 25 . 17
101 41 

  . 22
101 20 

  . 31
101 05 

  

 

 

3.1 –  On the interchangeability of p  and b  and the truly near-exact distribution 

We should note that in (3.1) p  and b  are indeed interchangeable, that is, the distribution 

of   in (3.1) is also the distribution of 

  * * *

2 2

1

~ ,with
b

j p

j j

j

Y Y Beta a


  

where *

2 2

pba a   , since indeed 

 

 
 

 
 

 
 

 
 

 
 

 
 

* *

2 2 2 2 2 2

* *
1 12 2 2 2 2 2

2 2 2 2 2

1 2 2 2 2 2

j j j p jbp b

j j j j pb
j j

j p jb bb

p j jb b
j

a a it a a it

a a it a a it

a a it

a a it

 



           


           

       


       

 



 



a m

m

a
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although this relation may be not completely evident at first sight. But, if we look well at (3.4), 

the interchangeability of p  and b  is evident in 
1, ( )W t , while from the relation between a  

and *a  we may easily see that we may write 
2, ( )W t  as 

 
 
 

 
 

1 2* *

2 2

2 1* *

2 2

p p

p p

a a it

a a it

 

 

    

    
 

since from the relation between a  and *a  we may also write *

2 2

p ba a   . But this 

interchangeability of p  and b  is not clear in (3.2), where the roles of p  and b  in the 

definition of the 
jr  are not clearly interchangeable. 

Indeed, the near-exact distribution expressed by the decomposition of ( )W t  in (3.4) is 

the most proper one. 

 

4. As a conclusion 

 
In this paper the author tried to show the need for the near-exact distributions as providers 

of much better approximations then the usual asymptotic distributions, at the same time that 

he tries to introduce these distributions in a simple way. Then he gave a couple of examples to 

illustrate how these distributions may be built, all the steps involved and some details to which 

one has to pay attention in case a really good and well-developed near-exact approximation is 

sought. 

The author hopes to have been able to have sparked the attention towards this method of 

approximation for the exact distribution of statistics with complex distributions and also to 

have been able to have shed the seeds of desire in some of the readers to explore and to learn 

more about the amazing world of probability distributions, namely the one of the near-exact 

distributions. 
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RESUMO 

As distribuições quase-exactas são distribuições assimptóticas construídas sobre 

uma abordagem diferente no que diz respeito ao princípio e à técnica da aproximação 

da distribuição de estatísticas cuja distribuição exacta tem uma estrutura e expressão 

complexas. 

No presente artigo o autor apresenta, em termos simples e através de dois 

exemplos, as distribuições quase-exactas como alternativa vantajosa às usuais 

distribuições assimptóticas. Em primeiro lugar são apresentadas as características e 

forma de construção destas distribuições e daí intuídas as suas vantagens em relação 

às usuais distribuições assimptóticas. Depois, através de dois exemplos, um primeiro 

muito simples e um segundo mais elaborado, tenta-se ilustrar como se constroem na 

prática estas distribuições e mostrar o seu excelente desempenho. 

ABSTRACT 

Near-exact distributions are asymptotic distributions built using a different concept 

and technique in what concerns the approximation of the distribution of given 

statistics whose exact distribution has a complex structure and expression.  

In the present paper the author introduces, in simple terms and through two 

examples, the near-exact distributions as an alternative to common asymptotic 

distributions. First are introduced the characteristics and the general building process 

of these distributions. Then, through a couple of examples, a very simple first one and 

a more elaborate second one, we try to illustrate how in practice these distributions 

may be developed and to show their very good performance. 

 



Near-exact Distributions – Needing Them and Building Them 

 

Gaudium Sciendi, Nº 1, Março 2012  
 

-123- 

 

 

 

 

 

http://www.amazon.com/gp/product/images/3838358465/ref=dp_image_z_0?ie=UTF8&n=283155&s=books

